using System;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Purchasing;

// Placing the Purchaser class in the CompleteProject namespace allows it to interact with ScoreManager,
// one of the existing Survival Shooter scripts.
namespace CompleteProject
{
	// Deriving the Purchaser class from IStoreListener enables it to receive messages from Unity Purchasing.
	public class Purchaser : MonoBehaviour, IStoreListener
	{
		private static IStoreController m_StoreController; // The Unity Purchasing system.
		private static IExtensionProvider m_StoreExtensionProvider; // The store-specific Purchasing subsystems.

		// Product identifiers for all products capable of being purchased:
		// "convenience" general identifiers for use with Purchasing, and their store-specific identifier
		// counterparts for use with and outside of Unity Purchasing. Define store-specific identifiers
		// also on each platform's publisher dashboard (iTunes Connect, Google Play Developer Console, etc.)

		// General product identifiers for the consumable, non-consumable, and subscription products.
		// Use these handles in the code to reference which product to purchase. Also use these values
		// when defining the Product Identifiers on the store. Except, for illustration purposes, the
		// kProductIDSubscription - it has custom Apple and Google identifiers. We declare their store-
		// specific mapping to Unity Purchasing's AddProduct, below.
		public static string PRODUCT_Ad_Free = "Duck_Ad_Free";

		// Apple App Store-specific product identifier for the subscription product.
		//private static string kProductNameAppleSubscription = "com.unity3d.subscription.new";

		// Google Play Store-specific product identifier subscription product.
		//private static string kProductNameGooglePlaySubscription = "com.unity3d.subscription.original";

		void Start()
		{
			// If we haven't set up the Unity Purchasing reference
			if (m_StoreController == null)
			{
				// Begin to configure our connection to Purchasing
				InitializePurchasing();
			}
		}

		public void InitializePurchasing()
		{
			// If we have already connected to Purchasing ...
			if (IsInitialized())
			{
				// ... we are done here.
				return;
			}

			// Create a builder, first passing in a suite of Unity provided stores.
			var builder = ConfigurationBuilder.Instance(StandardPurchasingModule.Instance());

			builder.AddProduct(PRODUCT_Ad_Free, ProductType.NonConsumable);

			// Kick off the remainder of the set-up with an asynchrounous call, passing the configuration
			// and this class' instance. Expect a response either in OnInitialized or OnInitializeFailed.
			UnityPurchasing.Initialize(this, builder);
		}

		private bool IsInitialized()
		{
			// Only say we are initialized if both the Purchasing references are set.
			return m_StoreController != null && m_StoreExtensionProvider != null;
		}

		public void BuyAdFree()
		{
			// Buy the non-consumable product using its general identifier. Expect a response either
			// through ProcessPurchase or OnPurchaseFailed asynchronously.
			BuyProductID(PRODUCT_Ad_Free);
		}

		void BuyProductID(string productId)
		{
			// If Purchasing has been initialized ...
			if (IsInitialized())
			{
				// ... look up the Product reference with the general product identifier and the Purchasing
				// system's products collection.
				Product product = m_StoreController.products.WithID(productId);

				// If the look up found a product for this device's store and that product is ready to be sold ...
				if (product != null && product.availableToPurchase)
				{
					Debug.Log(string.Format("Purchasing product asychronously: '{0}'", product.definition.id));
					// ... buy the product. Expect a response either through ProcessPurchase or OnPurchaseFailed
					// asynchronously.
					m_StoreController.InitiatePurchase(product);
				}
				// Otherwise ...
				else
				{
					// ... report the product look-up failure situation
					Debug.Log("BuyProductID: FAIL. Not purchasing product, either is not found or is not available for purchase");
				}
			}
			// Otherwise ...
			else
			{
				// ... report the fact Purchasing has not succeeded initializing yet. Consider waiting longer or
				// retrying initiailization.
				Debug.Log("BuyProductID FAIL. Not initialized.");
			}
		}

		// Restore purchases previously made by this customer. Some platforms automatically restore purchases, like Google.
		// Apple currently requires explicit purchase restoration for IAP, conditionally displaying a password prompt.
		public void RestorePurchases()
		{
			// If Purchasing has not yet been set up ...
			if (!IsInitialized())
			{
				// ... report the situation and stop restoring. Consider either waiting longer, or retrying initialization.
				Debug.Log("RestorePurchases FAIL. Not initialized.");
				return;
			}

			// If we are running on an Apple device ...
			if (Application.platform == RuntimePlatform.IPhonePlayer ||
				Application.platform == RuntimePlatform.OSXPlayer)
			{
				// ... begin restoring purchases
				Debug.Log("RestorePurchases started ...");

				// Fetch the Apple store-specific subsystem.
				var apple = m_StoreExtensionProvider.GetExtension<IAppleExtensions>();
				// Begin the asynchronous process of restoring purchases. Expect a confirmation response in
				// the Action<bool> below, and ProcessPurchase if there are previously purchased products to restore.
				apple.RestoreTransactions((result) => {
					// The first phase of restoration. If no more responses are received on ProcessPurchase then
					// no purchases are available to be restored.
					Debug.Log("RestorePurchases continuing: " + result + ". If no further messages, no purchases available to restore.");
				});
				GameControl.instance.RestoreButton.image.sprite = GameControl.instance.OnSprite;
			}
			// Otherwise ...
			else
			{
				// We are not running on an Apple device. No work is necessary to restore purchases.
				Debug.Log("RestorePurchases FAIL. Not supported on this platform. Current = " + Application.platform);
			}
		}

		//
		// --- IStoreListener
		//

		public void OnInitialized(IStoreController controller, IExtensionProvider extensions)
		{
			// Purchasing has succeeded initializing. Collect our Purchasing references.
			Debug.Log("OnInitialized: PASS");

			// Overall Purchasing system, configured with products for this application.
			m_StoreController = controller;
			// Store specific subsystem, for accessing device-specific store features.
			m_StoreExtensionProvider = extensions;
		}

		public void OnInitializeFailed(InitializationFailureReason error)
		{
			// Purchasing set-up has not succeeded. Check error for reason. Consider sharing this reason with the user.
			Debug.Log("OnInitializeFailed InitializationFailureReason:" + error);
		}

		public PurchaseProcessingResult ProcessPurchase(PurchaseEventArgs args)
		{

			if (String.Equals(args.purchasedProduct.definition.id, PRODUCT_Ad_Free, StringComparison.Ordinal))
			{
				Debug.Log(string.Format("ProcessPurchase: PASS. Product: '{0}'", args.purchasedProduct.definition.id));
				// TODO: The non-consumable item has been successfully purchased, grant this item to the player.
				GlobalControl.Instance.gamePurchased = 1;
				PlayerPrefs.SetInt ("gamePurchased", GlobalControl.Instance.gamePurchased);
				GlobalControl.Instance.purchasedMusicBool = true;
				PlayerPrefs.SetInt ("purchasedMusic", 1);
				GameControl.instance.DefaultMusicToggle.image.sprite = GameControl.instance.OffSprite;
				GameControl.instance.PurchasedMusicToggle.image.sprite = GameControl.instance.OnSprite;
				GameControl.instance.DefaultMustPurchaseText.gameObject.SetActive(false);
				GameControl.instance.Song2MustPurchaseText.gameObject.SetActive(false);
				GameControl.instance.DefaultSongText.gameObject.SetActive (true);
				GameControl.instance.DefaultSong2Text.gameObject.SetActive (true);
			}
			else
			{
				Debug.Log(string.Format("ProcessPurchase: FAIL. Unrecognized product: '{0}'", args.purchasedProduct.definition.id));
			}

			// Return a flag indicating whether this product has completely been received, or if the application needs
			// to be reminded of this purchase at next app launch. Use PurchaseProcessingResult.Pending when still
			// saving purchased products to the cloud, and when that save is delayed.
			return PurchaseProcessingResult.Complete;
		}

		public void OnPurchaseFailed(Product product, PurchaseFailureReason failureReason)
		{
			// A product purchase attempt did not succeed. Check failureReason for more detail. Consider sharing
			// this reason with the user to guide their troubleshooting actions.
			Debug.Log(string.Format("OnPurchaseFailed: FAIL. Product: '{0}', PurchaseFailureReason: {1}", product.definition.storeSpecificId, failureReason));
		}
	}
[bookmark: _GoBack]}
